The formation of labyrinths, spots and stripe fragments: Applications to cardiovascular calcification and bone regeneration

نویسنده

  • A Yochelis
چکیده

Calcification and mineralization are fundamental physiological processes, yet the mechanisms of calcification, in trabecular bone and in calcified lesions in atherosclerotic calcification, are unclear. Recently, it was shown in in vitro experiments that vascular-derived mesenchymal stem cells can display self-organized calcified patterns. These patterns were attributed to activator/inhibitor dynamics in the style of Turing, with bone morphogenetic protein 2 (BMP-2) acting as an activator, and matrix GLA protein (MGP) acting as an inhibitor. Different pattern morphologies were produced by external application of the inhibitor MGP. Motivated by this qualitative activator-inhibitor dynamics, we study here a bistable form of the Gierer-Meinhardt model, with autocatalytic saturation. Through a detailed analysis in one and two dimensions, we explore the pattern formation mechanisms of steady state patterns, including their dependence on initial conditions. These patterns range from localized holes to labyrinths and localized peaks, or in other words, from dense to sparse activator distributions (respectively). We believe that an understanding of the wide spectrum of activator-inhibitor patterns discussed here is prerequisite to their biochemical control. The mechanisms of pattern formation suggest therapeutic strategies applicable to bone formation in atherosclerotic lesions in arteries (where it is pathological) and to the regeneration of trabecular bone (recapitulating normal physiological development).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRYSTALLIZATION AND SINTERABILITY BEHAVIOR OF BIORESORBABLE CaO-P2O5-Na2O-TiO2 GLASS CERAMICS FOR BONE REGENERATION APPLICATION

Abstract:Some types of glass and glass ceramics have a great potential for making bone tissue engineering scaffolds, drug carrier and bone cements as they can bond to host bone, stimulate bone cells toward osteogenesis, and resorb at the same time as the bone is repaired. Calcium phosphate glass ceramics have very attractive properties that allow them to use in bone tissue engineering. Calcium ...

متن کامل

Differentiation Potential and Culture Requirements of Mesenchymal Stem Cells from Ovine Bone Marrow for Tissue Regeneration Applications

Objectives- To isolate, culture-expand and differentiate mesenchymal stem cells from ovine bone marrow and determine their culture requirements for high expansion rate. Design- Experimental study. Animals- Five Shal sheep. Procedures- In this study, ovine marrow cells were plated and culture expanded through 3 successive subcultures. The resultant cells were then plated at differentiating condi...

متن کامل

بررسی تاثیر اسیدالائیدیک بر بیان ژن استئونکتین در سلول‌های عضله‌ی صاف دیواره‌ی رگ‌ها

Background and Objective: Atheroma formation and progression of atherosclerosis are dependent on the expression of bone matrix proteins and regulatory factors such as osteonectin in the vessel walls. Studies have shown that consumption of Trans fatty acids increase risk of cardiovascular diseases. In this study, the effect of elaidic acid on osteonectin gene expression as one of the vascular ca...

متن کامل

The effect of freeze-dried bone allograft and partially demineralized freeze-dried bone allograft on regeneration of rabbit calvarial bone defects: A Histological and histomorphometric study

Background and Aims: Reconstruction of osseous defects is one of the ideal goals of periodontal treatments and dental implant therapy. Different biomaterials have been used for this purpose and many studies have tried to compare and introduce the best ones. The present study aimed to evaluate the effect of PDFDB (Partially Demineralized Freeze-Dried Bone Graft) and FDBA (Freeze Dried Bone Allog...

متن کامل

Preparation and characterization of Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite for bone repair application

Objective(s): Hardystonite (HT) is Zn-modified silicate bioceramics with promising results for bone tissue regeneration. However, HT possesses no obvious apatite formation. Thus, in this study we incorporated Sr and Ti into HT to prepare Sr-Ti-hardystonite (Sr-Ti-HT) nanocomposite and evaluated its in vitro bioactivity with the purpose of developing a more bioactive bone substitute material. Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008